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in the methyl group is perturbed by the 1,3 diaxial interaction, 
thus increasing the vibrational frequency and hence the zero 
point energy of methyl groups in the axial position. The CD3 
group has a lower zero point energy and thus is raised less in 
energy than the CH3 group. If methyl groups in the equatorial 
position are unperturbed, as is likely, the energy difference 
between the conformations is simply due to this factor.17"18 

It is important to be aware of the possible presence of con­
formational equilibrium isotope effects when using intrinsic 
chemical shift isotope effects for assignment of 13C resonances. 
While rigid molecules pose no problem, systems in which 
deuterium substitution either breaks the conformational de­
generacy, or perturbs a nondegenerate equilibrium, can po­
tentially show a conformational equilibrium isotope effect, as 
well as an intrinsic chemical shift isotope effect.19 
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Interaction of an Iron Macrocyclic Complex 
with Apohemoglobin and Apomyoglobin 

Sir: 

For many years, attempts have been made to prepare iron 
complexes which could react reversibly with dioxygen. One of 
the main objectives of these efforts was to establish the mode 
of binding of the oxygen molecule to the iron atom. The real­
ization that Fe(II) complexes undergo irreversible oxidation 
via a dioxygen bridged dimer, Fe"-0-0-Fe" , have led 
Baldwin1 and Collman2 independently to a successful solution 
to this problem. They reasoned that the dimerization can be 
impeded by a sterically hindered ligand and, thus, in Baldwin's 
case, that the steric hindrance was built into the periphery of 
a macrocyclic ligand, while Collman prepared the now famous 
"picket fence" porphyrin. It was later realized that the steric 
hindrance is not obligatory for the reversible uptake of diox­
ygen and that simple iron porphyrins, such as Fe"-TPP, can 
also bind dioxygen reversibly at low temperature.3 

We thought that it would be of interest to use globin as the 
sterically hindered environment and investigate its interaction 
with relatively simple macrocyclic iron complexes. We rea­
soned that, if such complexes could enter the heme cavity, then, 
with the right choice of iron macrocycle, reversible oxygenation 
would take place. In this communication, we report the inter­
action of human apohemoglobin and horse heart apomyoglobin 
with the iron complex of the macrocyclic ligand, 5.14-dihy-
drodibenzo[6,<'][5.9.14.18]tetraaza[14]annulen (L)45 (Figure 
1). 

Refluxing stoichiometric amounts of L and Fe(CH3COO)2 
in DMF led to the isolation of the red brown complex Fe(L)-
(CH3COO).6 Apohemoglobin and apomyoglobin were pre­
pared from human hemoglobin and horses heart myoglobin 
respectively, by the acid-butanone method.7 The protein 
preparations were checked by reconstitution and reaction with 
dioxygen. 

The electronic spectra of Fe(L)(CH3COO) and its imid­
azole adduct are shown in Figure 2. Addition of the complex 
dissolved in a minimum amount of DMF to an aqueous solu­
tion of globin gave rise to the electronic spectra depicated in 

Figure 1. The macrocyclic ligand used in the study. 
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Figure 2. Visible spectra of FeL+ (- - -) of its imidazole adduct ( ) in 
DMF. 
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Figure 3. The visible spectra of the FeL+ complex with globin (—) and 
with albumin (---)• 

Figure 3. The similarity between the two spectra is apparent, 
and, since addition of histidine to the complex results in an 
electronic spectrum which is virtually identical with that of the 
imidazole adduct, it is suggested that the complex binds to the 
protein via the imidazole ring of a histidine residue. The at­
tachment of the complex to the histidine residue is not specific 
to globin but occurs also with albumin, as can be seen from 
Figure 3. 

To establish the stoichiometry of the interaction between 
this iron complex and globin, a solution of the globin was 
treated with excess complex. The unbound complex was re­
moved by chromatography on a Sephadex G-IO column. The 
amount of bound iron was determined by the Folin-Ciocalteau 
method.9 The results of several determinations clearly indicate 
that one complex molecule is bound to one subunit of globin. 
It should be pointed out that, in these determinations, the total 
protein and iron content is determined; thus the results are 
independent of the state of aggregation of the globin in solution, 
which is known only for the Rossi-Fanelli preparation. 

Spectrophotometric titration of a globin solution with the 
complex is shown in Figure 4, where the concentration of 
bound globin is plotted as a function of added complex.10 The 
sigmoid nature of the titration curve is quite apparent. This 
interesting result indicates a cooperative process in the binding 
of the complex to the protein, suggesting that the binding of 
the first complex molecule facilitates the binding of additional 
ones. This behavior is reminiscent of the interaction of heme 
with globin subunits. Addition of one heme to the a,/3 dimer 
of globin leads exclusively to the incorporation of two hemes, 
and there is no evidence for the existence of an a,@ dimer with 
only one heme, suggesting that the binding of the second heme 
molecule is more facile than the binding of the first.'' However, 
because of the high affinity of apohemoglobin for the heme 
molecule, the sigmoid nature of this interaction has never been 
observed experimentally. Also it was shown by Beychok that 
the attainment of the native structure of hemoglobin from its 
subunits is effected by the heme molecule.12 

By the same procedures described above it has also been 
shown that the Fe(III) complex binds to the heme site of 
myoglobin, and that the stoichiometry of binding is 1:1. As 
expected, the curve which results from spectrophotometric 
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Figure 4. Spectrophotometric titration of globin solution with the complex: 
(A) total complex concentration; (v) concentration of bound protein 
complex. 

• o.i 

-0.096 

0,2 03 0,4 05 0.6 0.7 QS 0.9 ANSImMI 
0.192 0 286 0384 0.4S0 0 576 0.672 0768 0.864 ComelnlmM) 

Figure 5. Fluorimetric titration of globin with ANS ( • ) and back titration 
with complex (O). Globin concentration 0.085 mM. 

titration of myoglobin solution with the complex is not sig-
moidal but hyperbolic. 

Of particular interest is the point of attachment of the 
complex to the globin. It was shown by Stryer13 that 1-ani-
lino-8-naphthalene sulfonate (ANS) binds stoichiometrically 
to the heme site on apohemoglobin and that the displacement 
of the ANS molecule by hemin can be followed fluorimetri­
cally. Thus, the ANS apohemoglobin complex was prepared 
and the displacement of the ANS molecule by the complex was 
followed fluorimetrically. As can be seen from Figure 5, the 
enhanced fluorescence of bound ANS decreases with an in­
crease in the amount of added complex and is abolished at 10:1 
mol of complex/mol of globin. This result, coupled with the 
stoichiometry of binding clearly establishes that the complex 
and the ANS molecule bind at the same site, which has been 
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Figure 6. The visible spectra of the Fe(III) and Fe(II) complexes with 
apomyoglobin, and the interaction of Fe(II) bound myoglobin complex 
with O2 and CO. 

shown to be the heme site in hemoglobin.13 Similar results have 
been obtained with apomyoglobin. 

The binding of O2 and CO to apomyoglobin bound complex 
was examined spectrophotometrically. The electronic ab­
sorption spectra of the bound complex after reduction with 
dithionite is shown in Figure 6. Exposure of the solution to air 
leads to an electronic absorption spectrum which differs con­
siderably from that of the Fe(III) bound complex. It is sug­
gested that this electronic spectrum results from binding of O2 
to Fe(II). This suggestion is strongly supported by the spectral 
changes which occur with carbon monoxide. When the re­
duction is performed in CO atmosphere, the spectrum of the 
CO adduct is obtained (Figure 6). On exposure of this solution 
to air, the electronic spectrum reverts to that of the O2 adduct. 
This process is irreversible in that the dioxygen molecule can 
not be displaced with CO. Attempts to remove O2 by freeze-
thaw techniques were so far unsuccessful because of dena-
turation of the protein. However, it should be pointed out that, 
although the hydrophobic cavity of the protein prevents the 
oxidation of the iron complex, the O2 binding to this particular 
complex need not be reversible, since the reversibility depends 
primarily on the electronic structure of the complex. 

We are currently studying other iron complexes as well as 
their cobalt analogues in order to shed more light on this in­
teresting problem. 
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A Novel Photoaddition of 6-Cyanouracils to Alkenes 
and Alkynes Involving Migration of a Cyano Group1 

Sir: 

Photochemical cycloaddition of cyclic enones to olefins has 
been studied for many years from mechanistic and synthetic 
points of view.2,3 Recently, Swenton and co-workers have de­
scribed the remarkable effect of a substituents in controlling 
the regioselectivity of the photocycloadditions of uracils4 and 
cycloalkenones5 to olefins.6 During our studies directed toward 
the photochemical synthesis of nucleic acid-amino acid ad-
ducts,7 we have found that 6-cyanouracils undergo an unusual 
photoaddition to alkenes and alkynes leading directly to 5-
substituted uracils via the migration of the cyano group. The 
present reaction provides a novel type of photoaddition that 
can compete with [2 + 2] cycloaddition through a biradical 
intermediate, and constitutes a new concept for the direct 
functionalization at the C-5 position of uracil and uridine de­
rivatives.8 

Irradiation of 6-cyano-l,3-dimethyluracil9 (la, 1 mM) in 
acetonitrile at 20 0C in the presence of 2-methyl-2-butene (20 
mM) with a high-pressure mercury lamp (Pyrex filter) fol­
lowed by preparative TLC produced a rearranged adduct, 2 
(60%). The structure of 2 was assigned on the basis of spectral 
data10 and by converting it into the amide 310 (50%, AcOH-
H2SO4). Irradiation of la with 1-hexyne in acetonitrile under 
the same conditions gave a 1:1 E-Z mixture of 4a10 (65%)." 
Both isomers produced 5-formyl-l,3-dimethyluracil12 (5, 55%) 
upon ozonolysis. In none of these cases was the cycloadduct 
detected in the reaction mixture.13 This novel photoaddition 
was also successfully applied to a 6-cyanopyrimidine nucleo­
side. Thus, irradiation of lb9 in acetonitrile in the presence of 
1-hexyne followed by preparative TLC yielded 4b10 (37%). 

4a,b 

Irradiation of la with other olefins under similar conditions 
gave the corresponding 5-substituted uracils but in competition 
with the formation of cycloadducts (Table I) with the ratio of 
the products being temperature dependent. For example, ir-
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